Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
European Heart Journal ; 42(SUPPL 1):2518, 2021.
Article in English | EMBASE | ID: covidwho-1554731

ABSTRACT

Background: Endothelial damage caused by COVID-19 may imperil the cardiovascular health of millions. More than a year since WHO declared the COVID-19 pandemic, information on the lasting effects of this infection on the cardiovascular system beyond the acute phase is still lacking. Purpose: To study macrovascular endothelial dysfunction and activation, coagulation and inflammation, 3 months after resolution of acute COVID- 19 symptoms. Methods: A cross-sectional observational cohort study was conducted including 203 patients with PCR confirmed COVID-19 disease, 6-20 weeks after acute COVID-19. The primary endpoint was macrovascular endothelial function, assessed by the carotid artery reactivity (CAR) test. The CAR measures the carotid artery diameter in response to hand in icewater immersion. A historic cohort of 313 subjects served as controls. Propensity score matching was used to correct for baseline differences. Plasma endothelin-1 (ET-1), interleukin (IL)-1ra, IL-6, IL-18 were measured by ELISA. ET-1 levels were also measured in a partially overlapping COVID-19 cohort of which plasma samples were available during the acute phase. Coagulation enzyme:inhibitor complexes for thrombin:antithrombin (TAT), factor (F) IXa:AT, FVIIa:AT, FXIa:AT, FXIa:alpha 1 antitrypsin (a1AT), FXIa:C1 esterase inhibitor (C1inh), kallikrein(PKa):C1inh and von Willebrand Factor:antigen (vWF:Ag), were assessed by in house developed ELISA. Results: After propensity score matching, the prevalence of macrovascular dysfunction did not differ between the COVID-19 (22.5%) versus the historical control cohort (18.6%, RD -3.92%, 95%-CI -15 to 7.19, p=0.49). Plasma concentrations of markers for endothelial activation were elevated (>1 SD above normal);ET-1 (64.9%), and vWF:Ag (80.8%). In controls, ET- 1 levels were significantly lower as compared to COVID-19 patients during the acute phase and after 3 months. ET-1 levels were significantly higher 3 months after COVID-19 as compared to the acute phase. Cytokines were high in a majority of patients: IL-18 (73.9%), IL-6 (51.2%), and IL- 1ra (48.9%). TAT and FIXa:AT, reflecting a prothrombotic state, were high in 48.3% and 29.6% of the patients, respectively. FVIIa:AT, as marker of the extrinsic pathway, was elevated (35%). Markers of contact activation were also increased: PKa:C1inh (16.3%), FXIa:AT (16.3%), FXIa:a1AT (20.7%), and FXIa:C1inh (17.7%) (picture 1). Conclusions: At 3 months after acute COVID-19 there was no indication of macrovascular dysfunction as compared to matched historic controls;there was evidence, however, of sustained thrombo-inflammation, indicated by high circulating concentrations of ET-1, vWF:Ag, proinflammatory cytokines, and markers of coagulation (picture 2). Elevated IL-18 levels could potentially induce arterial inflammation and subsequent atherogenesis. Our data highlight the importance of further studies on SARS-CoV-2 related thrombo-inflammation, as well as longer follow-ups in recovered patients. (Figure Presented).

SELECTION OF CITATIONS
SEARCH DETAIL